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ABSTRACT 

 

 

 Intrusion Detection is a broad and complex field in cybersecurity. There are varieties of existing 

methods with varying degrees of success, which attempt to classify various types of traffic as 

benign, or attacking. A tool that can do this consistently and reliably, and with minimal overhead 

is ideal, benefiting with respect to analysis overhead, as well as level of information privilege.  

This paper attempts to provide such a tool through packet sequence analysis.  

Packet sequence, as referred to in this paper, is the order and number of the exchange of packets. 

Sequential probability ratio test (SPRT) analysis is done on the sequence history of each pair of 

IP addresses in attempt to determine if the flow can be classified as an attack based solely on 

this. SPRT is performed for single class, two class, and with more specialized attack classes.  

Through manipulation of a large variety of parameters and analysis of results indicated that 

packet sequence can, under the right circumstances provide an indication of an attack. While this 

is true most of the attacks seen in the data tested, there is a high level of parameter tuning process 

involved. While likely not all attacks will be identifiable by this method, for those attacks which 

do not appear readily and obviously useful, there are several which show promise with different 

configurations of parameters, and could potentially be useful with a higher degree of tuning.  
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CHAPTER 1. INTRODUCTION 

The incentive for an effective IDS with very little overhead or data needed exists in a variety of 

applications. Oftentimes an ideal IDS is configured as an IPS, that is Intrusion Prevention 

System. In this case the system needs to be in-line like a firewall, perform the analysis on live 

data and traffic packets must meet certain criteria in order to pass through the firewall or it will 

be dropped. Oftentimes even a basic firewall gets overwhelmed in this configuration, especially 

under large bandwidth situations. Under these circumstances a device might go into failover 

mode, which either slows network traffic to a crawl, or allows it to continue un-analyzed, 

bypassing the protection measures [1]. For this reason, in a situation like this it is important to 

keep the processing overhead to a minimum, and avoid creating a network speed bottleneck, 

while still maintaining an effective level of detection.  

Sometimes other factors eliminate the possibility for deeper network inspection aside from the 

large volume or processing required, with this as the case, the incentive for such a system is in 

the need for very little data, and no identifiable information from packets. With encryption as 

common and useful as it is today, it often allows cyber criminals to take advantage of this by 

attacking over an encrypted channel such as SSL or SSH [2] [3]. Attackers can for example 

disguise traffic of planted malware over encrypted channels and remain indistinguishable from 

legitimate traffic. Even when the payload is encrypted, addresses are still available, being 

required by routers and network systems for delivery. This information can be used without 

needing to access the more complex information potentially held.  

As the proposed analysis likely requires training on both legitimate, and malicious data, ISPs are 

potentially a massive source of information regarding both types of network traffic. However 

there are also many scenarios where data sharing is prohibited by legal consequence, or some 

other disincentive. The need for a proposed system is high in cases such as this as well, needing 

virtually none of this protected data. For example HIPPA regulations or an organizations 

reluctant to allow other access to customer or otherwise sensitive data.   In these situations the 

proposed scheme could still benefit as an intrusion detection system where many or most others 

might not be able to. A step further, in stripping even more identifying data and obfuscating the 

IP addresses involved, but leaving the flow intact will still allow the algorithm to function and 

user privacy may still be preserved.  
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The motivation and inspiration for this project comes from attacks where an out-of-order, or 

abnormal pattern of packets, is used to disrupt or attack systems. Noticing and identifying this 

behavior could be key to minimalistic-ally identifying an attack, especially if it is unique to a 

certain attack method.  In contrast, even classifying attacks as abnormal or unlikely given a set of 

background data would prove useful to intrusion detection. 
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CHAPTER 2. RELATED WORK AND OTHER METHODS 

Intrusion detection as a field is a large area of security, cyber and otherwise. This paper aims to 

implement a network based IDS, analyzing network data with the purpose of looking for attacks 

and anomalies. Network intrusion detection is not a new field, some of its origins seen in 1987 

and frequently added to since [4]. But there are ever evolving techniques and strategies, we see 

everything from open source systems like Snort and Bro, with community developed 

customizable tools, to highly commercialized systems like FireEye with sophisticated analysis 

techniques [5] [6] [7]. A common feature of these systems is gathering statistics about the traffic, 

or subsets of the traffic and examining with various data analysis methods these features often 

involve potentially protected data, or [8].  Applications of lightweight protocols that use only a 

subset of data such as SSHCure have been attempted before on network traffic to detect ongoing 

attacks [3]. A lightweight method such as SSHCure gives promise that the minimal method is 

possible.  

Markov Chains are certainly not new to the broad field of anomaly detection, having been used 

to examine standard and abnormal video conditions, and are not new to the field of security [9]. 

Applications of Markov Chains, and Hidden Markov Models, in network analysis with the goal 

of intrusion and anomaly detection have been attempted, and successful previously, though other 

methods generally examine phases of an attack as states of a Hidden Markov Model rather than 

network data points [10] [11]. Columbia University describes the problem of information 

sharing, with large organizations and internet service providers being reluctant to share data that 

may prove useful to collaborate in intrusion detection. They do this by attempting to anonymize 

user data and preventing Markov Chain timing attacks from taking place as an attempt to 

correlate user identities [12]. Additional advancements in this regard are important to ensure that 

anonymous sharing of data, along with a continued support of user privacy are essential to 

computer security. This paper aims to show another method which will allow data sharing for 

attack and anomaly detection, and still preserve user privacy. 

In attempt to reduce the impact of the network bottleneck problem that many intrusion 

prevention systems face, some turn to high speed, specialized hardware. This hardware 

acceleration requires a very static algorithm however, and the constantly evolving methods of 

attackers prevent use of this for every part of the algorithm, though it can still be beneficial. This 
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type of device may also be useful in the proposed system, though reduction of data required 

could make it more effective, or even less necessary. While some of these devices have very 

impressive statistics, they provide little headway to the issue of user anonymity. This paper aims 

to build on this theory of non-disruption through exploration of data-lightweight analysis 

algorithms.  
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CHAPTER 3. EXPERIMENT CONCEPTS 

The algorithm this paper intends to build for analysis relies heavily on several mathematical 

concepts. An introduction to each, along with a general context is included with basic examples. 

Each is described as it relates to the other concepts relevant to the experiment performed. A 

discussion of how each will be applied to the context of networks appears in Chapter 4 below.  

Markov Chains   

A Markov Chain is a mathematical way of representing the states in a system. This system could 

be the anything from the current base a runner is on to as complex as the state of a computer 

register [13]. What a Markov Chain does is attempt to represent the probability of a transition 

from one state to another possible state. From a simple example, the state of a coin flip, it is 

obvious that a coin can flip either a heads or tails, and at each stage, the probability of 

transitioning to either heads or tails on the next flip is each 0.5. This can be seen in the diagram 

below, with the states as circles, and the arrows and numbers representing probability transitions 

between.  

 

Figure 1 Markov Chain Example Diagram 1, Coin Flip 

Though this is a very simple system, more complex cases can be captured with a similar 

diagram. Note that for each state, the probabilities of transitions exiting the state must add up to 

1, including a possibility of remaining in the same state. That is some transition must occur, even 

a transition which maintains the current state. A more involved example representing the 

hypothetical states of weather: sunny, rainy, and windy is included below. Note the similar 

properties to above.  
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Figure 2 Markov Chain Example Diagram 2, Weather Prediction 

This same Markov Chain information can be captured in a matrix as well, and is oftentimes more 

useful. The current states are listed vertically, and the next potential states are listed horizontally. 

Note that like the sum of transition probabilities, represented above as arrows must be equal to 1, 

with a matrix each row must do the same. Both examples previously demonstrated as chains are 

converted to matrixes and included below.  

             Sunny Rainy Windy 

 H T  Sunny 0.7 0.25 .05 

H .5 .5  Rainy 0.2 0.5 0.3 

T .5 .5  Windy 0.15 0.3 0.55 

Figure 3 Markov Chain Example Matrices 
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In practice the transition values of a Markov Chain are often not readily known, in these cases a 

sample of observations is taken in order to estimate the states. The current state is observed, 

allowed to proceed to the next state, and the transition recorded as a sample. This process is 

repeated many times until a sufficient sample is taken and the chain is trained. Note that while 

we can observe it, Markov Chains as represented do not take into consideration any state history. 

A standard Markov Chain captures is the transition between two states, meaning that there is no 

allowed dependency on the states leading up to the one represented. In a sufficiently sampled 

chain, transition probability will be accurate considering all possible histories. In practice there 

may indeed be other dependencies, which are explored through order, and a pseudo-time 

dependency later.  It may be possible to calculate a better certainty for transition probability if 

the history leading up to is also considered, taking into account the previous n states 

encountered.   

This is where the concept of a Markov Chain with history is introduced.  In the case of a true 

random variable, such as the coin flip, introducing any history will have no effect, given enough 

sampling to sufficiently train the Markov chain. This can be seen with the order 2 example 

included below. 

 T H 

H, H .5 .5 

H, T .5 .5 

T, H .5 .5 

T, T .5 .5 

Figure 4 Markov Chain Example Diagram 2nd Order 

There are other cases however, where a history may prove useful, such as the weather prediction 

example. Had history not been considered, the first three states shown, and to be precise: six 

more that are not, would all be included in one row for a single order chain. This allows better 

predictions to be made than when considering only a first order chain, showing a dependency on 

the previous transitions, or the state history.  
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 S R W 

S, S, S 0.65 0.15 0.2 

R, S, S 0.1 0.05 0.85 

W, S, S 0.55 0.25 0.2 

…    

W, R, W 0.2 0.6 0.2 

W, W, W 0.3 0.5 0.2 

Figure 5 Markov Chain Example Diagram 3rd Order 

Though increasing the order drastically may seem like an intuitive way to increase the precision 

when predicting state transitions, it is not without drawbacks. As can be seen by the matrix 

above, the number of rows is increased from just 3 with a first order to 18 with a third order. Or 

generally with an n-order, and the k size alphabet of possible states, increasing n by one will 

increase the number of rows necessary by a factor of k. In an n order Markov Chain, kn rows are 

necessary to maintain all possible states.  Along with this increase in space this increase comes a 

reduction in the amount of training done on each row. On average, for every row ending with a 

particular state, an n order increase will lead to the number of samples used for the training will 

be reduced by a factor of kn. Thus a large number of additional samples may be necessary to 

sufficiently train a matrix to the same degree of confidence. 

Once a Markov Chain is trained regardless of order, it is possible to observe a transition and 

determine the probability of the same transition occurring within a given matrix. Using this 

method an indication can be determined of how similar the circumstances in which the matrix 

was trained are to the circumstances under which the transition was observed.  

SPRT Algorithm and Log Likelihood ratio 

The Log Likelihood ratio is a method of measuring which of two classes an object is more likely 

to be a member of [14]. Given the probability of a sampled transition belonging to each of the 

classes, we assign one hypothesis class as the positive direction, and the other as the negative. 

These hypothesis classes will come from another mechanic, as it relates to the scope of his paper, 

this sample will come from a trained Markov Chain as described above. The log of the ratio is 
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then taken, which by logarithm algebraic rules can be written two equivalent ways in Formula 1 

below. The log will be positive if the ratio is greater than one, meaning the positive hypothesis is 

more likely and a negative log indicates the negative hypothesis is more likely.  

𝑙𝑜𝑔 𝛬(𝑥) = 𝐿𝑜𝑔 (
𝑃1(𝑦|𝑥)

𝑃2(𝑦|𝑥)
) = 𝐿𝑜𝑔(𝑃1(𝑦|𝑥)) − 𝐿𝑜𝑔(𝑃2(𝑦|𝑥))  

Formula 1 

Sequential Probability Ratio Test (SPRT) is a technique used for sequences in the classification 

problem. In this context SPRT is an extension of the likelihood ratio seen above that can be used 

when events occur in sequence, and are observed a common set of circumstances. For example, 

it can be used as a sampling algorithm for quality control, samples are taken from a set of 

product, and through SPRT, the batch can be determined to be either good or bad, the positive or 

negative hypothesis [15] [16]. Formally, SPRT is the sum of the log likelihood ratio, or the log of 

the ratio of membership probabilities. Si below represents the score of the ith  state, and log 𝛬(𝑥) 

is from Formula 1 above.  

𝑆𝑖 = 𝑆𝑖−1 + log 𝛬(𝑥)  

Formula 2 

This SPRT function can be visualized graphically, by plotting for value with respect to the 

number in the sequence. This lets the algorithm show how confident the sequence is to belong to 

either the positive or negative hypothesis. Ideally these graphs will clearly diverge and allow for 

immediate and obvious classification, an example of a graph that demonstrates this is included 

below. For the purposes of this paper, a positive event is when a flow would be classified as 

attack positive. That is, a positive indicates there is an attack present in the flow’s SPRT chart.  
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Figure 6 SPRT Two Class Expected 

 

In practice these graphs may not be well grouped, and may not diverge as quickly and cleanly as 

hoped, this means that false positives or negatives are likely. However because of the charted 

nature it is easy to define a threshold scheme to select classes. A simple linear fit line can be 

used, though more complex methods are clearly possible. A simple example is included below 

for reference. 

 

Figure 7 SPRT Threshold Example 

With the solid lines as various SPRT series, and the dotted line as the defined linear threshold, 

we see that most of these series are easily classified as above or below the threshold, and this is 

the ideal case. It is very possible however to have a sequence which crosses threshold multiple 
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times as demonstrated by the yellow line above. With only one threshold line each sequence 

would be determined upon the first observation, this is not what we want. Sone alternatives are to 

pay attention to the number and severity of the times a sequence crosses, a difference integration 

of sorts. Another simpler is to have two threshold lines with an ‘unknown zone’, and making a 

decision based upon this.   

 

Figure 8 SPRT Threshold Example 2 

With the two horizontal lines we more easily see an unknown zone where blue and yellow 

originate, then are soon after classified. It is also possible however, that an attacker may 

purposefully or be forced to exhibit normal user behavior for a period of time. This could be an 

unintentional part of attacking, perhaps involved in establishing a channel, or perhaps 

intentionally attempting to beat the classification system. In this case the flow of an attacker will 

still have large periods of decrease as the SPRT is charted. An example of what this may look 

like is included below. A good threshold idea for the classes should be able to detect and account 

for this behavior, and still classify as an attack. This could be seen, and accounted for by a sloped 

threshold, requiring that a flow behave well throughout the entirety of the attack in order to 

continue to be classified as legitimate.  
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Figure 9SPRT Threshold Example 3 

It can easily be imagined that a significant variety of possible schemes for which to classify the 

SPRT flows. Specific parameters will depend on the nature of the scenario, as well as the desired 

false positive and negative rates.  

SPRT Variants 

In some cases it may be beneficial to adjust the SPRT algorithm in attempt to more quickly or 

more accurately classify a sequence. The adjustment this paper examines is assigning a weight to 

the training of a particular scenario. The classes to be examined in this analysis are for 

membership of an estimated Markov Chain. Because these chains are estimated from training, a 

confidence multiplier can be assigned corresponding to how well the distribution for a transition 

from a given state has been trained. The general theory is that state transitions which have seen 

more, and thus are better trained, will be given a higher weight and allowed to affect the SPRT 

chart more.  Because the value is a ratio, this confidence multiplier should be assigned 

corresponding to the more minimally trained Markov Chain. This modifies Formula 2 as seen 

above as follows.  With the number of times the row ‘x’ in a matrix is trained, as P(x)i-train, and 

‘trained’ is an integer value where the matrix is then considered trained, and additional data 

points should not increase the confidence For the purposes of this experiment the trained value is 

set to consider 1000 packets sufficiently trained.  
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𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒:   𝐶 = min (
min (𝑃(𝑥)1−𝑡𝑟𝑎𝑖𝑛 , 𝑃(𝑥)2−𝑡𝑟𝑎𝑖𝑛)

𝑡𝑟𝑎𝑖𝑛𝑒𝑑
, 1) 

Formula 3 

𝑆𝑖 = 𝑆𝑖−1 + C ∗ log 𝛬(𝑥)  

Formula 4 

SPRT can be extended to consider cases where there is only one, and where there are n classes. 

For one class extension, the algorithm only needs to track the numerator of the LLR. Note that in 

this case, because a logarithm is negative on the (0-1) interval, the SPRT graph will be always 

decreasing. It would expect that a member of the class will have high probability and remain 

close to the horizontal axis, while a non-member will have low probability and decrease greatly. 

Threshold schemes for this scenario can be applied similarly to those examined above.  

 

Figure 10 SPRT One Class Expected 

If SPRT is extended to more than two classes, the easiest solution is to perform one class 

analysis on each, and determine which class fits most optimally.  Alternatively, and perhaps 

more effectively each can be compared to a reference class, consisting of background ‘normal’ 

noise as this paper later demonstrates. This requires scaling in the number of tests, and class 

training required to increase by a factor of the number of classes. In a cybersecurity context a 

class for each attack type would grow extremely quickly with the large variety of attacks which 

already exist, increasing the necessary computation of the system proposed.  
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CHAPTER 4. NETWORK APPLICATION OF SPRT 

In this paper, an attempt is made to classify network traffic through flow sequence patterns. 

Chapter 3 above discussed the mathematical concepts used in general to facilitate this process. 

This chapter is a description of how these tools relate to the network classification scenario, as 

well as how the algorithm of the experiment is performed. 

Markov Chain Formation 

For the scope of this paper a Markov state involves the sequence of packets between two hosts, 

we will refer to this sequence of events and the IPs associated a Flow. Regardless of the protocol, 

an exchange of packets takes place and the sequence contained is observable. The sequence can 

be gathered through sniffing, a custom network tap, pcap files, or a variety of other sources. 

Even with a variety of sources possible, in applications where information is sensitive, the 

appropriate transitions can be extracted and used to train a matrix. Sharing this matrix will not 

violate privacy of any sort, as once trained, each transition is indistinguishable from others and 

any context outside of any transition history included. Pseudocode of this transition extraction 

process is included in this sub section.  

When observing a flow sequence from any packet source, we use the following algorithm. Note 

that a flow, will have defining keys corresponding to the pair of IP addresses associated. A 

packet will as well, and thus the corresponding flow can be reference from a packet. 

 

Figure 11 Pseudo Code For Flow Extraction 

For each packet encountered: 

 If the flow corresponding to the packet exists in the dictionary:   

  Check the direction, if it is forwards: 

   Increase a counter kept for each flow, to reflect the number of packets seen in that direction   

  If it is backwards: 

   Append the current counter value to a list representing the history 

   Reset the counter back to one    

 If there is no flow that corresponds to the packet: 

  Initialize the flow in the dictionary 

  Initialize the counter of the flow to 0 
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This algorithm builds the flows that the defined states of the Markov chain can then come from. 

In practice we need to put a practical limit on the maximum number of packets recorded in one 

direction in a row, or the number of states in the Markov Chain will scale to be infinite in size. 

This value is set to 10 for the experiment and results discussed following. These flows have a 

history of the following form, where a, b … are positive integers between zero and the practical 

limit. 

[a, b, c, d ] -> e 

When examining a packet for the Markov chain sample the n order history must be considered, 

in order to attempt to take into account the beginning and ending of a sequence, leading and 

trailing zeros are added to the sequence, so for a 3 order Markov Chain, this is modified as 

follows. 

[0, 0, 0, a, b, c, d, e, 0] 

This allows the algorithm to use an n-wide sliding window approach to retrieve the state 

transitions. Continuing with the current example, the state transitions this flow gives us for an 

order 3 history are: 

[0, 0, 0] -> a; [0, 0, a] -> b; [0, a, b] -> c; [a, b, c] -> d; [b, c, d] -> e; [c, d, e] -> 0 

The algorithm then can use these transitions to train a matrix with the x -> y pairs by increasing 

counts in the corresponding position of the matrix. A sufficient amount of this data from benign 

traffic will train a matrix, and allow the algorithm to test the probability of membership with the 

SPRT algorithm.  This test is performed whenever a transition is observed in the flow, the 

probability of the current counter value is measured given the corresponding flow history in the 

matrix. For the example flow above, a subset of the transitions would be determined as follows.  

𝑃1(𝑎|[0,0,0]),     𝑃1(𝑐|[0, 𝑎, 𝑏]),     𝑃1(0|[𝑐, 𝑑, 𝑒]) 

For visualization purposes, the process would be to take the given Markov Matrix: P1, find the 

given row: [a, b, c], and locate the appropriate column: e. The probability at this location is what 

is used in LLR and SPRT as described below.  
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LLR and SPRT 

LLR and SPRT can be performed according to the several variants above. Given the trained 

matrices, SPRT can easily be plotted relative to one or two classes, and results examined for a 

threshold possibility. One Class, Two Class and Multi Class are all performed in the scope of this 

paper. For the purposes of this paper, in the multi-class case of this experiment, attack types are 

known and in order to save computational time, SPRT is only performed for each attack flow 

relative to that corresponding attack matrix. However in practice this is not possible, as an 

unknown flow cannot be evaluated against a single known attack if the attack is unknown. This 

will lead to a much more complex analysis process, scaled by a factor of the number of attack 

matrixes used.   

Pseudo Time Dependency 

A common behavior of attacks is to attempt to ignore protocol when establishing a channel, this 

might be done by sending out of order packets in attempt to exploit a vulnerable machine like the 

TCP split handshake attack, or sending a large number of packets initially to try to overwhelm a 

host like they SYN Flood attack [17] [18]. If this behavior occurs, it is likely to happen in the 

first several packet exchanges of a flow. In order to more fully account for this behavior, an 

additional dimension of the Markov Chain is taken into account, a pseudo timing of sorts.  

The number of the sequence in the flow will be the extra dimension that is also used to train, and 

to test the probability of membership to a class. The idea being that the initial sequence is not 

drowned in the Markov Chain by the volume of packets that are not part of this initial sequence. 

If a distinction is noticeable in an attack very early in the flow, this method should make the 

divergence more obvious, and the difference apparent early in the SPRT Graph.   

In practice the first 10 steps of the flow sequence are recorded in a corresponding matrix and all 

remaining are recorded in the same steady state matrix. So the transitions seen in a flow to be 

tested are evaluated against the same sequence number in the reference matrixes.  
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DARPA Dataset 

MIT and DARPA released datasets for the evaluation of intrusion detection systems, it consists 

of 7 weeks of training data, with a number of labeled attacks, and background data, as well as 2 

weeks of testing data in the same format, though consisting of a higher portion of attack data 

[19]. For this project a subset of the 1998 set is used for testing and training. Network traffic files 

were separated into normal or background data, and the distinct labeled attacks.  These attacks 

are used for training and testing both as an all encompassing group, and individually according 

the different class scenarios described above.  

Appendix A contains data counts, and histograms for the Markov Matrix associated with the 

background, and attack data sets used in training of the following experiments. Note that for the 

attack data, Appendix A only contains information about the jointly trained attack chain used in 

the Two Class case. For the Multi Class and individual attack chains, see the corresponding 

appendix containing more information about the attack type.  

There were 25 distinct attack types sampled from the DARPA data. All were used to train the 

attack Markov Chain in the Two Class case described and evaluated in Chapter 5.  
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CHAPTER 5.  RESULTS 

Because of the large number of attack types included in the DARPA 1998 Data, and a large 

number of variables examined, this section has selected and focuses mainly on 4 interesting 

attacks. Portscan, Multihop, Satan, and Warez, as labeled by DARPA. For completed results of 

these attacks see Appendices B – E including descriptions, histograms, and SPRT graphs of 

results. Relevant graphs are also included for discussion within this chapter when relevant. SPRT 

Charts are generated by plotting different parameter scenarios of attack data in red, against the 

same subset of background data, evaluated with the same parameters as the attack data, in blue.  

Effect of Order 

Intuitively, if a chain is able to be sufficiently trained, increasing the order will only increase the 

accuracy of predictions, as described above in section two. For example if an attacker makes an 

unlikely move within a low order chain, it will negatively affect the probability, and SPRT at few 

steps. But the same unlikely move will be present for the n steps, and impact the ratio for all n. 

For demonstration, below the order 1, 2, and 3 Two Class SPRT graphs for the Warez attack are 

included as a reference.  



www.manaraa.com

19 

 

 

Figure 12 Warez,  Order 1 

 

Figure 13 Warez, Order 2 
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Figure 14 Warez, Order 3 

As seen by the above charts, order has the effect of narrowing the grouping of both the attack 

and the background data, with the exception of outliers. This is a very useful effect, as it would 

allow for tighter thresholds and ideally fewer false positives and negatives. Though the graphs in 

general look promising, it is important to note the presence of several good reference flows still 

overlaid, and some even lower with the general grouping of attack flows, which would surely 

violate any thresholds set under this scenario.  
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Figure 15 Multihop Order 1 

 

Figure 16 Multihop, Order 3 
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As can be seen, the observations noted above hold true for other types of attacks as well, over the 

same number of sequence, the grouping of the Multihop attack flows grow closer with an 

increase from order 1 to order 3.   

 

Figure 17 Satan, Order 1 
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Figure 18 Satan, Order 2 

Once again, a similar effect on the increase of order is observed. While not all attack traffic 

could be correctly classified without false positives, a threshold which will capture all attack 

flows will include a small subset as false positives.   

Effect of Weight 

In attempt to compensate for a lack of attack training data, the weighted SPRT function Formula 

4 above is applied. The background reference matrix is significantly better trained than any of 

the attack matrixes, likely sufficiently falling above the trained threshold from Formula 3 in all 

transitions. For the attack reference matrix however this is less likely, both due to the lower 

availability of data, as well as a more narrow slice of traffic, which will likely populate a fewer 

variety of transitions. We again investigate the two class scenario for weighted and unweighted 

versions and explore the effect on captured data. In addition to two class we fix the order of the 

Markov history chain to 2.  
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Figure 19 Satan, Order 2, Unweighted 

 

Figure 20 Satan, Order 2, Weighted 
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In this scenario, it appears that the weighting formula actually had a negative effect on the SPRT 

graphs. As stated above, it is set to 1000 for the duration of experiments performed in this paper.  

Though of interesting note, every flow appears to have a very similarly probable initial sequence, 

noted by the first four graphed values having very minimal change. This introduces a new area 

for exploration, if a deviation in this initial control sequence is noticed, should the SPRT values 

be affected more significantly. This is later explored through the pseudo timing algorithm.  

 

Figure 21 Warez, Order 2, Unweighted 
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Figure 22 Warez, Order 2, Weighted 

Contrary to what is shown in Satan above, Warez produces truly unreliable results. It appears 

that because matrices are overwhelmingly better trained on background data, that attack traffic 

continues almost indistinguishable from background traffic because of a proportionately low 

degree of confidence compared to the background matrix.  

Unfortunately it appears that weighting the SPRT formula has not helped to compensated for a 

lack of training. It is possible that this is partially to do with an interesting finding related to the 

training distributions discussed in Chapter 5, which indicates that the matrix may be sufficiently 

well trained with fewer data points than expected.  

Effect of Classifiers 

Because SPRT is ultimately a sum of ratios, in the most general case we must have two reference 

points or hypotheses for which to compare effectively, though the one class SPRT variant 

discussed in Chapter 4 above is a possibility. The other possibility is the multi class case also 

introduced in Chapter 4 above. In this instance the flows in question are compared against a 

more precise matrix, trained only on a specific type of attack. Up until this point the results this 
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paper have discussed have been what we refer to as the two class case for consistency. That is, 

all available attack data is used to train the reference classifier. While this give us a balanced 

efficiency scenario between a potentially large number of Markov Matrixes required, and failing 

to be too specific when testing for membership to an attack class, other options should also be 

explored for their effect on the SPRT. In attempt to classify an unknown attack the single class 

method is also included. In an attempt to classify an attack as belonging to a Markov Chain 

consisting of all attacks, two class is used. In practice single or two class may be used as a sort of 

pre processor classification to classify most normal traffic, and reduce the flows for which multi 

class is performed. Multi class is an attempt to narrow the scope of the attack classification to 

just one type. By training the attack Markov Chain on a single attack type it may be more 

obvious a flow is a member of that particular class rather than when only compared to the 

general attack class. For the scope of this section we again fix order 2 and examine unweighted 

ratios.  

 

Figure 23 Portsweep, Order 2,  Unweighted, Single Class 
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Figure 24 Portsweep, Order 2, Unweighted, Two Class 

 

Figure 25 Portsweep, Order 2, Unweighted, Multi Class 
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Initially Portsweep should be noted as one of the most obvious forms of attack to identify with 

this classification scheme, as it is a scan against one address. There are possibly multiple 

concurrent connections, leading to higher numbers for each stream of packets, or step of the 

flow’s history as seen by our context. This should appear unusual compared to other background 

traffic, which should have low counts for each stream of packets. Even under this observation, 

we see that the one flow of packets classified under this scenario becomes increasingly more 

obvious through an increase in Markov Chain precision. While Portsweep appears obvious even 

in the single class, the two class is evermore clear. The attack flow is the only line that even 

crosses the horizontal 0-axis within the first 25 steps. In the Multi class the difference is even 

more apparent. The closest flow at step 26 to the two class was around a score of 5 away. In the 

multi class the end score is decreased further still, with a score almost doubling from -5 to -10.  

 

Figure 26 Satan, Order 2, Unweighted, Single Class 
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Figure 27 Satan, Order 2, Unweighted, Two Class 

 

Figure 28 Satan, Order 2, Unweighted, Multi Class 
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Observing Satan attack data, it is the most difficult of the selected attacks to classify, the single 

class SPRT is essentially worst case, with one representation of the attack going in a completely 

opposite end of the background reference data. Observation based solely on this would lead an 

analyst to almost immediately seek alternate methods for detecting the attack. When we continue 

and examine the two and multi class cases, the results look much better. In each case only 3 to 5 

background flows are seen between the two, this is much more optimal than the wildly 

encompassing Satan flows seen with one class SPRT. The significant improvements in this 

regard demonstrate the possibility of the method to identify the attack traffic through increased 

precision.  

Effect of Pseudo Time Dependency 

Because the effect of timing requires the equivalent of an increase in order of the size of the 

Markov Chain, the experiment is only performed for first and second order, though all other 

parameters are still manipulated as seen above. A complete listing of the SPRT graphs for these 

selected attacks is included in the appropriate appended section.  

 

Figure 29 Warez, Order Two, Unweighted, Two Class, No Time Dependency 
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Figure 30 Warez, Order Two, Two Class, Unweighted, Pseudo Time Dependency 

  

Comparing the above two graphs, when the pseudo timing scheme is introduced the grouping 

significantly improves for both background and attack data. While it does not appear that the 

classification would be decided any sooner by a threshold, within the first 10 steps affected, it 

does give opportunity for better threshold scheme later in the sequence. In addition, an outlier 

background flow that previously scored below all of the attack data has scored higher, 

significantly more in line with other reference data, with the introduction of this time 

dependency, indicating a potential reduction in the false positive rate as well.  
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Figure 31 Satan, Order One, Unweighted, Multi Class, No Time Dependency 

 

Figure 32 Satan, Order One, Unweighted, Multi Class, Pseudo Time Dependency 
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While the previous Warez example indeed looked promising, it appears that in other cases, such 

as Satan above the timing scheme has the opposite effect. The Two attack flows actually become 

less grouped, and a threshold scheme which selects both attack flows will incur significantly 

more false positives than it would have without this dependency. It is very likely that this is due 

to a training issue, as training the attack matrix with so few flows gives almost no data points for 

which to reference the first several transitions, and deviation of an attack even slightly in the 

several time-dependent steps, from previously seen similar attacks will give poor performance. 

Other Interesting Results 

Initially the practical limit on packet sequence was decided to be 10, that is, anything above 10 

packets from a flow in order, in one direction would be counted as the same thing for the Markov 

Chain’s purposes. The intent was to for this number to be sufficient enough to distinguish the 

majority of flows. This limit was established somewhat arbitrarily, but it appears that in practice 

it could have been much smaller, as seen below by a sample of the first order histograms from 

the appendixes. In these graphs the X axis corresponds to the different histories possible, or in 

other terms the rows of the matrices described in Chapter 3. The Y axis is a logarithmically 

scaled integer of the amount of times the Markov Chain was trained for that particular history, or 

as discussed above, each possible history representing a distribution.   

 

 

Figure 33 Good/Background Data Histogram 
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Figure 34 Bad Training Data Histogram 

 

 

Figure 35 Reference Good Background Histogram 

As can be seen the overwhelming majority in all cases comes from one and two counts, as would 

likely be expected for network traffic in general. Under this scheme the limit likely could have 

just as easily been set lower, to say 5, and similar results been yielded, while reducing the size of 

the matrix to an n order fraction of the original size.   

The above observations of an unsuccessful weighting scheme are supported by similar training 

histograms below. The training and testing datasets look very similar, even with one consisting 

of approximately 100 times the number of transitions 

 

Figure 36 Portweep Testing Data Histogram 
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Figure 37 Portsweep Training Data Histogram 

While the value of the graph for the background data is significantly higher, it is very 

proportionate to the values seen in the histogram for the testing data, and would tend to give very 

similar probabilities when tested for membership.  

Drawbacks 

While this method does prove effective with certain attack scenarios, and generally 

manipulations made increases the amount of grouping observed, or separation of attack and 

background traffic. This does not come without a price however. One of the goals of the project 

was to remain a saleable and fast algorithm. Each extra insight or dimension to a transition 

introduced increases the processing overhead significantly, often by a factor of the number of 

states. While this is necessary to a point, and it is not immediately an issue, the more this is 

increased, the more complex the algorithm becomes, and the less useful as an in-line method of 

intrusion prevention it will become. The multi class method in particular, the scaling required 

with the number of attacks becomes very large. While this does allow for additional performance 

tuning options, simply by turning on and off the checks against a particular attack Markov Chain, 

to test for all such attacks would be a computationally intensive ordeal.  

Another potential issue is network architecture. While testing for this issue was not done, 

Markov Chains trained on different network parameters may look very different. For example if 

payload size is limited, then the same channel between two hosts may look very different on 

another network. This could likely be, and should be circumvented by using a training matrix 

derived from traffic seen on the network to be tested, but this solution prevents data sharing 

between areas with different architecture. In this matter the monitoring algorithms could even be 
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distributed on a subnet or host based system for increased granularity and more precise 

background Markov Chains.   

This highlights another issue that reference data may be difficult to provide. Attack Markov 

chains could be given as a sort of indicator, and compared against carefully gathered and 

analyzed reference data in an enterprise or collaborative system. But because background data 

needs to be trained on an individual setup, background data without any attacks could be difficult 

to provide. Another tool will be necessary to remove attacks, this potentially being an existing 

solution, and be able to train the matrix on the cleaned data. Without an existing method of 

evaluating for clean data, the attack free background Markov Chain could prove difficult to train.   
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CHAPTER 6. FUTURE WORK 

As a general rule it is of note that the more finely grained analysis that can be performed, the 

more likely it is to yield useful results. There are additional data points from network traffic that 

could be used to further examine flows and potentially produce notable results. However this 

should be proceeded with caution, as any additional data from specific packets will stray from 

one of the primary goals of the project, that is to maintain a low level of information so that the 

tool can be used in data and privacy sensitive scenarios. In addition, more complex data 

processing can be explored, extra dimensions added, but is once again subject to violation of a 

primary goal of the project, increasing the computational overhead and reducing the usefulness 

for an in-line system. 

A next possible step in further examining flow sequences is to look more closely at the direction 

of the first packet. This will separate cases where a sub sequence might be likely to be seen as 

the initial part of a connection, an in for example inbound VPN, whereas an outbound VPN may 

be more suspicious. Exploring this method may make some attacks more apparent in this regard.  

There are also a large number of possible ways in which the traffics could be separated for 

analysis ahead of time, through the protocol, distributing the algorithm for each host, or 

segmented networks. However it is important to consider when exploring these options that 

additional complexity may violate one of the goals of the project, as each time traffic is separated 

in any form, at least an additional training matrices are necessary. 

Additional evaluation of the system is likely necessary, a direct comparison to existing intrusion 

detection systems for example. The testing and implementation of a threshold system would also 

need to be applied for this evaluation to take place. While very possible, there are several steps 

before the project can reach that goal.  
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CHAPTER 7. CONCLUSIONS 

This project explored a new avenue for the field of traffic classification. Using a minimal amount 

of data from network traffic, this paper was able to implement a method for characterizing a flow 

as a sample of a Markov Chain. These Markov Chains were then used as classifiers, and SPRT 

analysis performed. Using standard and defined variants to SPRT, grouping and separation of 

classes was shown, indicating the possibility of a classification scheme to identify attacks or 

abnormalities. Parameters explored for varied SPRT methods included all combinations of 

history degree, weighting, number of classifiers, and the introduction of a pseudo time 

dependency. All of these evaluations were done for four of the attacks seen in the DARPA 1998 

intrusion detection dataset and compared to a subset of reference normal data.  

While there are many possible avenues left to explore for this approach, this form of 

classification test has shown to indicate potential success at classifying network attacks with 

fairly high degrees of accuracy. The system can likely be utilized as both an online and offline 

analysis system, to prove useful in detecting attacks or anomalies.  Some issues do potentially 

exist with the setup and deployment process, but the method shows sincere potential as an 

effective method for classifying attack traffic, and should be included in future research into the 

intrusion detection field.  
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APPENDIX A. TRAINING AND REFERENCE DATASET HISTOGRAMS 

 

Background / Good is the data used in all experiments performed as a reference to normal. 

All Attack is the data used in all two class experiments. This is the chain trained on each attack 

Reference is the standard blue data used to evaluate attack classification against. A subset of the 

blue lines are plotted against each attack to better compare success of each attempt 

Table A1. Data Counts 

 Good/Background All Attack  Reference Good 

Flows 14205 4464 1970 

Transitions 3876442 508720 453722 

Packets 6239514 1047127 1484289 

 

Background / Good Training Data Histograms 

 

Figure A1. Order 1 Background / Good Training Data Histograms 

 

Figure A2. Order 2 Background / Good Training Data Histograms 
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Figure A3. Order 3 Background / Good Training Data Histograms 

 

All Attack Data Histograms 

 

Figure A4. Order 1 All Attack Training Data Histograms 

 

Figure A5. Order 2 All Attack Training Data Histograms 

 

Figure A6. Order 3 All Attack Training Data Histograms 
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Reference Background Data Histograms 

 

Figure A7. Order 1 Reference Good Training Data Histograms 

 

Figure A8. Order 2 Reference Good Training Data Histograms 

 

Figure A9. Order 3 Reference Good Training Data Histograms 
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APPENDIX B. MULTIHOP ATTACK DATASET SPRT GRAPHS 

Multhop is a set of attacks from the 1998 DARPA intrusion detection evaluation dataset. 

Included for reference is an organized listing of SPRT graphs calculated under explained 

Conditions. 

DARPA Description:  Multi-day scenario in which a user first breaks into one machine 

Table B1. Data Counts 

 Training Testing 

Flows 2 2 

Transitions 4480 7137 

Packets 7275 9407 

 

Training Dataset 

 

Figure B1. Multihop Order 1 Training Dataset Histogram  

 

Figure B2. Multihop Order 3 Training Dataset Histogram  

 

Figure B3. Multihop Order 3 Training Dataset Histogram  
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Testing Data Histograms 

 

Figure B4. Multihop Order 1 Testing Dataset Histogram  

 

 

Figure B5. Multihop Order 2 Testing Dataset Histogram  

 

 

Figure B6. Multihop Order 3 Testing Dataset Histogram  
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SPRT Graphs 

Figure B7. Order One, One class, Unweighted 

 

 
Figure B8.Order One, One class, Weighted 
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Figure B9. Order One, Two class, Unweighted 

 

 
Figure B10. Order One, Two class, Weighted 
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Figure B11. Order One, Multi class, Unweighted 

 

 
Figure B12. Order One, Multi class, Weighted 
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Figure B13. Order Two, One class, Unweighted 

 

 
Figure B14. Order Two, One class, Weighted 
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Figure B15. Order Two, Two class, Unweighted 

 

 
Figure B16. Order Two, Two class, Weighted 
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Figure B17. Order Two, Multi class, Unweighted 

 

 
Figure B18. Order Two, Multi class, Weighted 
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Figure B19. Order Three, One class, Unweighted 

 

 
Figure B20. Order Three, One class, Weighted 
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Figure B21. Order Three, Two class, Unweighted 

 

 
Figure B22. Order Three, Two class, Weighted 
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Figure B23. Order Three, Multi class, Unweighted 

 

 
Figure B24. Order Three, Multi class, Weighted 
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Figure B25. Order One, One class, Unweighted, Pseudo Timing 

 

 
Figure B26. Order One, One class, Weighted, Pseudo Timing 
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Figure B27. Order One, Two class, Unweighted, Pseudo Timing 

 

 
Figure B28. Order One, Two class, Weighted, Pseudo Timing 
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Figure B29. Order One, Multi class, Unweighted, Pseudo Timing 

 

 
Figure B30. Order One, Multi class, Weighted, Pseudo Timing 
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Figure B31. Order Two, One class, Unweighted, Pseudo Timing 

 

 
Figure B32. Order Two, One class, Weighted, Pseudo Timing 
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Figure B33. Order Two, Two class, Unweighted, Pseudo Timing  

 

 
Figure B34. Order Two, Two class, Weighted, Pseudo Timing 
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Figure B35. Order Two, Multi class, Unweighted, Pseudo Timing 

 

 
Figure B36. Order Two, Multi class, Weighted, Pseudo Timing 
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APPENDIX C. PORTSWEEP ATTACK DATASET SPRT GRAPHS 

Portseep  is a set of attacks from the 1998 DARPA intrusion detection evaluation dataset. 

Included for reference is an organized listing of SPRT graphs calculated under explained 

Conditions. 

DARPA Description:  Surveillance sweep through many ports to determine which services are 

supported on a single host.  

 

Data Counts 
Table C1. Data Counts 

 Training Testing 

Flows 4 1 

Transitions 5406 66 

Packets 6193 283 

 

Training Dataset 

 

Figure C1. Portsweep Order 1 Training Dataset Histogram  

 

 Figure C2. Portsweep Order 3 Training Dataset Histogram  
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Figure C3. Portsweep Order 3 Training Dataset Histogram  

 

Testing Data Histograms 

  

Figure C4. Portsweep Order 1 Testing Dataset Histogram  

 

Figure C5. Portsweep Order 2 Testing Dataset Histogram  

 

 

Figure C6. Portsweep Order 3 Testing Dataset Histogram  
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SPRT Graphs 

 

 Figure C7. Order One, One class, Unweighted

  
Figure C8.Order One, One class, Weighted 
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Figure C9. Order One, Two class, Unweighted 

 

  

Figure C10. Order One, Two class, Weighted 



www.manaraa.com

66 

 

 

  

Figure C11. Order One, Multi class, Unweighted 

  

Figure C12. Order One, Multi class, Weighted 
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Figure C13. Order Two, One class, Unweighted 

  

Figure C14. Order Two, One class, Weighted 
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Figure C15. Order Two, Two class, Unweighted 

 

 
Figure C16. Order Two, Two class, Weighted 
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Figure C17. Order Two, Multi class, Unweighted 

Figure C18. Order Two, Multi class, Weighted 
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Figure C19. Order Three, One class, Unweighted 

 

 
Figure C20. Order Three, One class, Weighted 
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Figure C21. Order Three, Two class, Unweighted 

  

Figure C22. Order Three, Two class, Weighted 
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Figure C23. Order Three, Multi class, Unweighted 

 

  Figure C24. Order Three, Multi class, Weighted 
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  Figure C25. Order One, One class, Unweighted, Pseudo Timing 

 

  Figure C26. Order One, One class, Weighted, Pseudo Timing 
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  Figure C27. Order One, Two class, Unweighted, Pseudo Timing 

 

  Figure C28. Order One, Two class, Weighted, Pseudo Timing 
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  Figure C29. Order One, Multi class, Unweighted, Pseudo Timing 

 

  Figure C30. Order One, Multi class, Weighted, Pseudo Timing 
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  Figure C31. Order Two, One class, Unweighted, Pseudo Timing 

 

  Figure C32. Order Two, One class, Weighted, Pseudo Timing 
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  Figure C33. Order Two, Two class, Unweighted, Pseudo Timing  

 

  Figure C34. Order Two, Two class, Weighted, Pseudo Timing 
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  Figure C35. Order Two, Multi class, Unweighted, Pseudo Timing 

 

  Figure C36. Order Two, Multi class, Weighted, Pseudo Timing 
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APPENDIX D. SATAN ATTACK DATASET SPRT GRAPHS 

Satan is a set of attacks from the 1998 DARPA intrusion detection evaluation dataset. Included 

for reference is an organized listing of SPRT graphs calculated under explained Conditions. 

DARPA Description:  Network probing tool which looks for well-known weaknesses. 

Data Counts 

Table D1. Data Counts  

 Training Testing 

Flows 2 2 

Transitions 7189 247 

Packets 8957 320 

 

Training Dataset  

 

 Figure D1. Satan Order 1 Training Dataset Histogram  

   

 Figure D2. Satan Order 3 Training Dataset Histogram  

 
Figure D3. Satan Order 3 Training Dataset Histogram  
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Testing Dataset Histograms 

   

 

Figure D4. Satan Order 1 Testing Dataset Histogram  

   

Figure D5. Satan Order 2 Testing Dataset Histogram  

    

Figure D6. Satan Order 3 Testing Dataset Histogram  
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SPRT Graphs 

  

 

 Figure D7. Order One, One class, Unweighted   
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  Figure D8.Order One, One class, Weighted 

  

 

  Figure D9. Order One, Two class, Unweighted 
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   Figure D10. Order One, Two class, Weighted 

  

   Figure D11. Order One, Multi class, Unweighted 
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    Figure D12. Order One, Multi class, Weighted 

  

   Figure D13. Order Two, One class, Unweighted 
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 Figure D14. Order Two, One class, Weighted 

 

 Figure D15. Order Two, Two class, Unweighted 
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Figure D16. Order Two, Two class, Weighted 

 

 Figure D17. Order Two, Multi class, Unweighted 
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  Figure D18. Order Two, Multi class, Weighted 

 

 

   Figure D19. Order Three, One class, Unweighted 
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   Figure D20. Order Three, One class, Weighted 

  

   Figure D21. Order Three, Two class, Unweighted 
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Figure D22. Order Three, Two class, Weighted 

  

 

Figure D23. Order Three, Multi class, Unweighted 
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  Figure D24. Order Three, Multi class, Weighted 

   

  Figure D25. Order One, One class, Unweighted, Pseudo Timing 
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  Figure D26. Order One, One class, Weighted, Pseudo Timing 

 

 

  Figure D27. Order One, Two class, Unweighted, Pseudo Timing 
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  Figure D28. Order One, Two class, Weighted, Pseudo Timing 

   

  Figure D29. Order One, Multi class, Unweighted, Pseudo Timing 
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  Figure D30. Order One, Multi class, Weighted, Pseudo Timing 

  

 

  Figure D31. Order Two, One class, Unweighted, Pseudo Timing 
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  Figure D32. Order Two, One class, Weighted, Pseudo Timing 

  

 

  Figure D33. Order Two, Two class, Unweighted, Pseudo Timing  
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  Figure D34. Order Two, Two class, Weighted, Pseudo Timing 

  

 

  Figure D35. Order Two, Multi class, Unweighted, Pseudo Timing 
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  Figure D36. Order Two, Multi class, Weighted, Pseudo Timing 
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APPENDIX E. WAREZ ATTACK DATASET SPRT GRAPHS 

Portseep  is a set of attacks from the 1998 DARPA intrusion detection evaluation dataset. 

Included for reference is an organized listing of SPRT graphs calculated under explained 

Conditions. 

DARPA Description:  User logs into anonymous FTP site and creates a hidden directory. 

 

Data Counts 

Table E1. Data Counts 

 Training Testing 

Flows 21 40 

Transitions 50512 179084 

Packets 131299 312619 

 

Training Dataset   

Figure E1. Warez Order 1 Training Dataset Histogram  

 

 

 Figure E2. Warez Order 3 Training Dataset Histogram  
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Figure E3. Warez Order 3 Training Dataset Histogram  

 

Testing Dataset Histograms 

  

 

Figure E4. Warez Order 1 Testing Dataset Histogram  

  

Figure E5. Warez Order 2 Testing Dataset Histogram  

   

Figure E6. Warez Order 3 Testing Dataset Histogram  
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SPRT Graphs 

 

 

 Figure E7. Order One, One class, Unweighted   

 
Figure E8.Order One, One class, Weighted 
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Figure E9. Order One, Two class, Unweighted 

 

   Figure E10. Order One, Two class, Weighted 
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   Figure E11. Order One, Multi class, Unweighted 

   
Figure E12. Order One, Multi class, Weighted 
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   Figure E13. Order Two, One class, Unweighted 

   

 Figure E14. Order Two, One class, Weighted 
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 Figure E15. Order Two, Two class, Unweighted 

    

Figure E16. Order Two, Two class, Weighted 
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Figure E17. Order Two, Multi class, Unweighted 

 
Figure E18. Order Two, Multi class, Weighted 
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   Figure E19. Order Three, One class, Unweighted 

 

   Figure E20. Order Three, One class, Weighted 
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   Figure E21. Order Three, Two class, Unweighted 

    

Figure E22. Order Three, Two class, Weighted 
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Figure E23. Order Three, Multi class, Unweighted 

 

 

  Figure E24. Order Three, Multi class, Weighted 
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  Figure E25. Order One, One class, Unweighted, Pseudo Timing 

 

 

  Figure E26. Order One, One class, Weighted, Pseudo Timing 



www.manaraa.com

109 

 

 

  Figure E27. Order One, Two class, Unweighted, Pseudo Timing 

 

 

  Figure E28. Order One, Two class, Weighted, Pseudo Timing 
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  Figure E29. Order One, Multi class, Unweighted, Pseudo Timing 

  

  Figure E30. Order One, Multi class, Weighted, Pseudo Timing 
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  Figure E31. Order Two, One class, Unweighted, Pseudo Timing 

  

  Figure E32. Order Two, One class, Weighted, Pseudo Timing 
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  Figure E33. Order Two, Two class, Unweighted, Pseudo Timing  

 

 

  Figure E34. Order Two, Two class, Weighted, Pseudo Timing 
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  Figure E35. Order Two, Multi class, Unweighted, Pseudo Timing 

 

 

  Figure E36. Order Two, Multi class, Weighted, Pseudo Timing 
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